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Abstract. Let two Riemannian metricsg and ḡ on the torusTn have
the same geodesics (considered as unparameterized curves). Then we
can construct invariantlyn commuting differential operators of second
order. The Laplacian∆g of the metricg is one of these operators. For
anyx ∈ Tn, consider the linear transformationG of TxTn given by the
tensorgiαḡαj . If all eigenvalues ofG are different at one point of the
torus then they are different at every point; the operators are linearly
independent and we can globally separate the variables in the equation
∆gf = µf on this torus.

1. Commuting Operators for Projectively Equivalent Metrics

Let g and ḡ are twoC2-smooth Riemannian metrics on some manifoldMn.
They areprojectively equivalent if they have the same geodesics considered
as unparameterized curves.

The problem of describing projectively equivalent metrics was stated by Bel-
trami in [1]. Locally, in the neighborhood of so-called sable points, it was
essentially solved by Dini [3] for surfaces and by Levi-Civita [4] for manifolds
of arbitrary dimension. Denote byG the tensorgiαḡαj . In invariant terms,G is
the fiberwise-linear mappingG : TMn → TMn such that its restriction to any
tangent spaceTx0M

n is the linear transformation ofTx0M
n satisfying the fol-

lowing condition: for any vectorsξ, ν ∈ Tx0M
n, the scalar productg(G(ξ), ν)

of the vectorsG(ξ) and ν in g is equal to the scalar product̄g(ξ, ν) of the
vectorsξ andν in ḡ.
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