Twentieth International Conference on Geometry, Integrability and Quantization June 02–07, 2018, Varna, Bulgaria Ivaïlo M. Mladenov, Vladimir Pulov and Akira Yoshioka, Editors **Avangard Prima**, Sofia 2019, pp 285–296 doi: 10.7546/giq-20-2019-285-296

SOLUTIONS TO A VECTOR HEISENBERG FERROMAGNET EQUATION RELATED TO SYMMETRIC SPACES

TIHOMIR VALCHEV and ALEXANDAR YANOVSKI[†]

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences Acad. G. Bonchev Str., Block 8, 1113 Sofia, Bulgaria

[†]Department of Mathematics & Applied Mathematics, University of Cape Town Rondebosch 7700, Cape Town, South Africa

Abstract. In this report we consider a vector generalization of Heisenberg ferromagnet equation. That completely integrable system is related to a spectral problem in pole gauge for the Lie algebra $\mathfrak{sl}(n + 1, \mathbb{C})$. We construct special solutions over constant background using dressing technique.

MSC: 35C05, 35C08, 35G50, 37K15, 37K35

Keywords: Dressing method, particular solutions, vector generalized Heisenberg ferromagnet equation

1. Introduction

In [8], the authors of the current text introduced the following matrix system of completely integrable equations

$$\mathbf{i}\mathbf{u}_t + \left[(\mathbf{u}Q_m \mathbf{u}^{\dagger}Q_n)_x \mathbf{u} - \mathbf{u}(Q_m \mathbf{u}^{\dagger}Q_n \mathbf{u})_x \right]_x = 0$$
(1)

and the corresponding auxiliary spectral problem. Above, the subscripts mean partial differentiation, "†" denotes Hermitian conjugation and Q_m , Q_n are diagonal matrices of dimension m and n respectively having ± 1 on their principal diagonals. It is also assumed that the $n \times m$ matrix $\mathbf{u}(x, t)$ fulfill certain algebraic condition, see [8] for more details.

System (1) contains as particular cases the classical 1 + 1 dimensional Heisenberg ferromagnet equation, known to be integrable through inverse spectral transform [2,6] and some of its integrable generalizations recently studied [1,9,10]. Its Lax