Twenty Second International Conference on Geometry, Integrability and Quantization June 8–13, 2020, Varna, Bulgaria Ivaïlo M. Mladenov, Vladimir Pulov and Akira Yoshioka, Editors **Avangard Prima**, Sofia 2021, pp 165–187 doi: 10.7546/gig-22-2021-165-187

ALGEBRA OF SUPERALGEBRAIC SPINORS AS ALGEBRA OF SECOND QUANTIZATION OF FERMIONS

VADIM MONAKHOV and ALEXEY KOZHEDUB

Department of Computational Physics, Saint Petersburg State University 198504 Saint Petersburg, Russia

Abstract. We developed the theory of superalgebraic spinors, which is based on the use of Grassmann densities and derivatives with respect to them in a pseudo-continuous space of momenta. The algebra that they form corresponds to the algebra of second quantization of fermions. We have constructed a vacuum state vector and have shown that it is symmetric with respect to P, CT and CPT transformations. Operators C and T transforms the vacuum into an alternative one. Therefore, time inversion T and charge conjugation C cannot be exact symmetries of the spinors.

MSC: 81R25, 81R40

 $\label{lem:keywords:cond} \textit{Keywords}: \textit{Clifford algebra}, \textit{CPT}, \textit{discrete space}, \textit{second quantization}, \textit{space-space}, \textit{spa$

time, spinor vacuum

CONTENTS

1.	Introduction	166
	Grassmann Densities and Relations of CAR Algebra	
3.	Generalized Dirac Conjugation	169
4.	Additional Gamma Operators $\hat{\gamma}^6$ and $\hat{\gamma}^7$	171
5.	Discretization of the Momentum Space and Spinor Vacuum	172
6.	Spatial Reflection Operator and Parity Operator P	174
7.	Clifford Reflection of Two Axes and Time Reflection Operators	177
8.	Operators of Complex Conjugation, Time Inversion T , Charge Conjugation C , CT , CPT , iQ	182
9.	Conclusion	185
Ref	ferences	186