SERIES ON

ON THE DYNAMICS OF THE SOLAR SYSTEM III: PERIHELION PRECESSION AND ECCENTRICITY VARIATION

RAMON GONZÁLEZ CALVET

Communicated by Charles-Michel Marle
The dynamic equations of the solar system outlined in relative coordinates provide the derivatives of the orbital angular momentum and the orbital energy with respect to time. From them, the perihelion precession rates as well as the variation rates of the orbital eccentricity of the planets of the solar system at J2000 are calculated under the approximation of elliptic orbits. The integration of the derivative of Earth's orbital angular momentum yields the planetary corrections to the equation of time. Venus' and Jupiter's corrections are the main ones, whose addition reaches up to ± 1 minute.

MSC: 70F10, 70F15
Keywords: Equation of time, n-body problem, orbital eccentricity, perihelion precession, solar system

Contents

1 Introduction 2
2 Variation of the Orbital Energy and Angular Momentum 2
2.1 Circular Orbits . 3
2.2 Elliptic Orbits . 10

3 Variation of the Perihelion Longitude 13
4 Orbital Energy 18
5 Variation of the Eccentricity 19
6 Evaluation of the Derivative of the Eccentricity 20
7 Evaluation of the Derivative of the Perihelion Longitude 24
8 Discussion 28
9 Acceleration with Respect to the Barycenter of the Solar System 31
10 Conclusions 38
doi:10.7546/giq-25-2023-1-45 1

