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The paper is devoted to exploration of statistical manifolds. In particular we con-
sider exponential family manifolds, its metrics and connections. We proved that a
statistical manifold does not admit nontrivial geodesic mapping between the Rie-
mannian connection and any alpha-connection. Besides, a statistical manifold does
not admit a Weyl connection which coincides with any alpha-connection.

We obtain also that the Fisher information matrix calculated for a mixture family
is a Hessian metric.
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1. Introduction

Information geometry as a subject emerged in the fundamental paper [9]. There it
has been suggested to consider the Fisher information matrix as a metric of some
smooth manifold M. The manifold is constructed from a parameterized family
of probability distributions and the Fisher information matrix plays the role of the
manifold Riemannian metric. Rao and Cramér [5] presented independently of each
other a fundamental theorem in statistics, which was later called the Cramér-Rao
theorem. So the Riemannian distance between two Gaussian distributions with
different means and variances was calculated using the Fisher metric.

Rao [10] proposed also a higher-order asymptotic theory of statistical inference,
according which the maximum-likelihood estimator (MLE) keeps the maximum
amount of information up to higher orders. Also he introduced a third-order sym-
metric tensor. Both the Fisher metric and third-order symmetric tensor define in-
variant affine connections on a statistical manifold M.

One knows that expanding the estimation error in series of O(1/n) presents the
MLE as an optimal estimator if number of observations # is large. Obviously the
‘higher order’ implies terms of O(1/n?). A geometrical theory which describes the
higher-order quantities through statistical curvatures was proposed by Efron [6].
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