Third International Conference on Geometry, Integrability and Quantization June 14–23, 2001, Varna, Bulgaria Ivaïlo M. Mladenov and Gregory L. Naber, Editors Coral Press, Sofia 2001, pp 165–170

NEWS ON IMMERSIONS OF THE LOBACHEVSKY SPACE INTO EUCLIDEAN SPACE

YURIJ AMINOV

Institute for Low Temperature, NAS of Ukraine 47 Lenin Ave, 61164 Kharkov, Ukraine Institute of Mathematics, University of Bialystok 2 Akademicka Street, 15-267 Bialystok, Poland

Abstract. An exposition of the new results concerning the nonexistence of local isometric immersions of 3-dimensional Lobachevsky space L^3 into 5-dimensional Euclidean space E^5 with constant curvature of the Grassmannian image metric, on connections between curvatures of asymptotic lines on a domain of $L^3 \subset E^5$, on regularity theorems for surfaces obtained by Backlund transformation of a domain of $L^2 \subset S^3$ and $L^2 \subset E^3$.

Isometric immersions of the domains of the n-dimensional Lobachevsky space L^n into the (2n - 1)-dimensional Euclidean space E^{2n-1} for n > 2 were considered in works by Moore, Tenenblat, Terng, the present author and others. It is well-known, that L^n cannot be locally immersed into E^{2n-2} . So the dimension (2n - 1) is the least possible one. In this case there exist relations between the extrinsic and intrinsic properties of the submanifolds. It is possible to prove that on an immersed domain of L^n there exist coordinates of curvature u^1, \ldots, u^n such that the metric of L^n is expressed in the form

$$ds^{2} = \sum_{i=1}^{n} \sin^{2} \sigma_{i} (du^{i})^{2}$$
(1)

with the condition

$$\sum_{i=1}^{n} \sin^2 \sigma_i = 1.$$
(2)

165