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OF REAL HYPERSURFACES OF A COMPLEX SPACE FORM
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Abstract. Any real hypersurface of a Kähler manifold carries a natural
almost contact metric structure. There are four basic classes of real
hypersurfaces of a Kähler manifold with respect to the induced almost
contact metric structure. In this paper we study the basic classes of real
hypersurfaces of a complex space form in terms of their Riemannian
curvatures.

1. Introduction

Let M̄2n+2(J,G) be an almost Hermitian manifold with almost complex struc-
ture J and Riemmannian metric G : J2 = − Id, G(JX̄, JȲ ) = G(X̄, Ȳ ),
X̄, Ȳ ∈ XM̄2n+2.

If M2n+1 is a hypersurface in M̄2n+2 with a unit normal vector field N , then
there arises naturally an almost contact metric structure (ϕ, ξ, η, g) on M2n+1

in the following way [3, 10, 12]:

ξ = −JN, g = G|M , ϕ = J − η ⊗ N ,

η(X) = g(ξ, X), X ∈ XM 2n+1 .

Let ∇ and ∇′ be the Levi-Civita connections on M2n+1 and M̄2n+2, respec-
tively. We denote by Φ the fundamental 2-form of the structure (ϕ, ξ, η, g)

Φ(X,Y ) = g(X, ϕY ) , X, Y ∈ XM 2n+1

and by F ′ = −∇′Φ, F = ∇Φ. If A is the shape operator and h(X,Y ) =
g(AX, Y ), X, Y ∈ XM 2n+1 is the second fundamental tensor of M2n+1,
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