RIEMANNIAN CURVATURES OF THE FOUR BASIC CLASSES OF REAL HYPERSURFACES OF A COMPLEX SPACE FORM

GEORGI GANCHEV and MILEN HRISTOV

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences Acad. G. Bontchev Street, Block 8, 1113 Sofia, Bulgaria

Abstract. Any real hypersurface of a Kähler manifold carries a natural almost contact metric structure. There are four basic classes of real hypersurfaces of a Kähler manifold with respect to the induced almost contact metric structure. In this paper we study the basic classes of real hypersurfaces of a complex space form in terms of their Riemannian curvatures.

1. Introduction

Let $\overline{M}^{2n+2}(J,G)$ be an almost Hermitian manifold with almost complex structure J and Riemmannian metric $G: J^2 = -\operatorname{Id}, G(J\overline{X}, J\overline{Y}) = G(\overline{X}, \overline{Y}), \overline{X}, \overline{Y} \in \mathfrak{X}\overline{M}^{2n+2}.$

If M^{2n+1} is a hypersurface in \overline{M}^{2n+2} with a unit normal vector field N, then there arises naturally an almost contact metric structure (φ, ξ, η, g) on M^{2n+1} in the following way [3, 10, 12]:

$$\begin{split} \xi &= -JN, \quad g = G_{|M}, \quad \varphi = J - \eta \otimes N \,, \\ \eta(X) &= g(\xi, X), \quad X \in \mathfrak{X} M^{2n+1} \,. \end{split}$$

Let ∇ and ∇' be the Levi-Civita connections on M^{2n+1} and \overline{M}^{2n+2} , respectively. We denote by Φ the fundamental 2-form of the structure (φ, ξ, η, g)

$$\Phi(X,Y) = g(X,\varphi Y), \qquad X,Y \in \mathfrak{X}M^{2n+1}$$

and by $F' = -\nabla'\Phi$, $F = \nabla\Phi$. If A is the shape operator and h(X, Y) = g(AX, Y), $X, Y \in \mathfrak{X}M^{2n+1}$ is the second fundamental tensor of M^{2n+1} ,