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Abstract. The Björling problem for maximal surfaces in Lorentz–
Minkowski space L

3 has been recently studied by the author together
with Alías and Chaves. The present paper is a natural extension of that
work, and provides several variations of Björling problem. The main
scheme is the following. One starts with a spacelike analytic curve in
L

3, and asks for the construction of a maximal surface which contains
that curve, and satisfies additionally some other geometric condition.
The solution of these Björling-type problems are then applied with a
twofold purpose: to construct examples of maximal surfaces in L3 with
prescribed properties, and to classify certain families of maximal sur-
faces.

1. Introduction

In 1844 Björling [2] asked whether, given an analytic strip in R3, it is possi-
ble to construct explicitly a minimal surface in R

3 containing that strip in its
interior. The question, known as Björling problem for minimal surfaces, was
solved in 1890 by Schwarz [9] by means of a complex variable formula which
describes minimal surfaces in terms of analytic strips. That formula happened
to be quite useful to establish results about minimal surfaces, as well as to con-
struct particular examples of minimal surfaces in R3 with interesting geometric
properties. Modern approaches to the Björling problem in Euclidean space can
be found in [3, 8].
This classic geometric setting was extended in [1] to the case of maximal sur-
faces in the Lorentz–Minkowski space L

3. A surface in L
3 is a maximal

surface provided it has zero mean curvature and its induced metric is Rie-
mannian. The solution to Björling problem in L

3 states the following.
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