WEITZENBÖCK FORMULAS ON POISSON PROBABILITY SPACES

NICOLAS PRIVAULT*

Grupo de Física Matemática, Universidade de Lisboa 2 Gama Pinto Ave, 1649-003 Lisboa, Portugal

> Abstract. This paper surveys and compares some recent approaches to stochastic infinite-dimensional geometry on the space Γ of configurations (i. e. locally finite subsets) of a Riemannian manifold M under Poisson measures. In particular, different approaches to Bochner– Weitzenböck formulas are considered. A unitary transform is also introduced by mapping functions of n configuration points to their multiple stochastic integral.

1. Weitzenböck Formula under a Measure

Let M be a Riemannian manifold with volume measure dx, covariant derivative ∇ , and exterior derivative d. Let ∇^*_{μ} and d^*_{μ} denote the adjoints of ∇ and d under a measure μ on M of the form $\mu(dx) = e^{\phi(x)} dx$. The classical Weitzenböck formula under the measure μ states that

$$\mathrm{d}_{\mu}^*\,\mathrm{d}+\,\mathrm{d}\,\mathrm{d}_{\mu}^*=\nabla_{\!\!\mu}^*\nabla+R-\mathrm{Hess}\,\phi\,,$$

where R denotes the Ricci tensor on M. In terms of the de Rham Laplacian $H_R = d^*_{\mu} d + d d^*_{\mu}$ and of the Bochner Laplacian $H_B = \nabla^*_{\mu} \nabla$ we have

$$H_R = H_B + R - \text{Hess}\,\phi$$
.

In particular the term $\operatorname{Hess} \phi$ plays the role of a curvature under the measure μ .

^{*} Permanent address: Université de La Rochelle, 17042 La Rochelle, France.