

Geometry, Integrability and Quantization

SEDIES ON

ISSN 1314-3247

ON A PARTICULAR TYPE OF SPACE-LIKE ROTATIONAL HYPERSURFACES IN PSEUDO-EUCLIDEAN 4-SPACE \mathbb{E}_2^4

ERHAN GÜLER, YUSUF YAYLI and HASAN HILMI HACISALIHOĞLU

Communicated by Mayeul Arminjon

In this study, a particular type of rotational hypersurface, is examined within the framework of the four-dimensional pseudo-Euclidean space \mathbb{E}_2^4 . The curvatures of the hypersurface are formulated. Furthermore, the associated Laplace-Beltrami operator is computed, and it is demonstrated that the hypersurface satisfies the eigenvalue equation $\Delta \mathbf{x} = \mathcal{A}\mathbf{x}$, where \mathcal{A} is a constant 4×4 matrix.

MSC: 53A35, 53C50

Keywords: Curvature, four-dimension, Laplace-Beltrami operator, pseudo-Euclidean space, rotational hypersurface

Contents

1	Introduction	33
2	Preliminaries	34
3	Curvatures	37
4	A Particular Rotational Hypersurface	37
5	Particular Rotational Hypersurface Satisfying $\Delta x = \mathcal{H}x$ in \mathbb{E}_2^4	39
6	Conclusion	44
References		44

1. Introduction

An isometric immersion (M, x) into Euclidean space is called finite type if the position vector field $x: M \longrightarrow \mathbb{E}^m$ can be decomposed into a finite sum of eigenfunctions of the Laplacian Δ on M, that is, $x = x_0 + \sum_{i=1}^k x_i$, where x_0 is a constant map, x_1, x_2, \ldots, x_k are non-constant maps satisfying $\Delta x_i = \lambda_i x_i$ for some $\lambda_i \in \mathbb{R}$,