POISSON STRUCTURES IN \mathbb{R}^3

METIN GÜRSES and KOSTYANTYN ZHELTUKHIN

Department of Mathematics, Faculty of Sciences, Bilkent University, 06800 Ankara, Turkey

> **Abstract.** The Poisson structures and Hamiltonian formulation of three dimensional systems is considered in general. A class of degenerate structures in higher dimensions is also briefly discussed.

1. Introduction

In a recent work we [1] have considered the Poisson structures in \mathbb{R}^3 . We showed that, locally all such structures must have the form

$$J^{ij} = \mu \epsilon^{ijk} \partial_k \Psi \tag{1}$$

where μ and Ψ are arbitrary differentiable functions of x^i , i = 1, 2, 3 and ϵ^{ijk} is the Levi-Civita symbol. Here we use the summation convention. This has a very natural geometrical explanation. Let $\Psi = c_1$ and $H = c_2$ define two surfaces S_1 and S_2 respectively, in \mathbb{R}^3 , where c_1 and c_2 are some constants. Then the intersection of these surfaces define a curve C in \mathbb{R}^3 . The velocity vector dx/dtof this curve is parallel to the vector product of the normal vectors $\nabla \Psi$ and ∇H of the surfaces S_1 and S_2 , respectively, i.e.,

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \mu \nabla \Psi \times \nabla H \tag{2}$$

where μ is any arbitrary function in \mathbb{R}^3 . Equation (2) defines a Hamiltonian system in \mathbb{R}^3 . In [1] we proved that all Hamiltonian systems in \mathbb{R}^3 are of the form (2).

In many examples the general form (1) of a Poisson structure is preserved globally, including the irregular points (points where the rank of the structure changes). That is a Poisson structure has the same form on different symplectic leaves [8].

The general form (1) allows to construct the compatible Poisson structures and the corresponding bi-Hamiltonian systems. The bi-Hamiltonian representation of a system is closely related to the notion of integrability. Given a bi-Hamiltonian system one can construct an infinite hierarchy of commuting first integrals, using

144