THE ZEROS OF POLYNOMIALS ORTHOGONAL WITH RESPECT TO q-INTEGRAL ON SEVERAL INTERVALS IN THE COMPLEX PLANE

PREDRAG M. RAJKOVIĆ ${ }^{\dagger}$, MIOMIR S. STANKOVIĆ \ddagger and SLADJANA D. MARINKOVIĆ*
${ }^{\dagger}$ Department of Mathematics, Faculty of Mechanical Engineering, University of Niš Niš, Serbia and Montenegro
${ }^{\ddagger}$ Department of Mathematics, Faculty of Occupational Safety, University of Niš Niš, Serbia and Montenegro
*Department of Mathematics, Faculty of Electronic Engineering, University of Niš
Niš, Serbia and Montenegro

Abstract

We construct the sequence of orthogonal polynomials with respect to an inner product defined in the sense of q-integration over several intervals in the complex plane. For such introduced polynomials we prove that all zeros lie in the smallest convex hull over the intervals in the complex plane. The results are stated precisely in some special cases, as some symmetric cases of equal lengths, angles and weights.

1. Introduction

We will start with well-known facts from q-calculus [1], [2], where q is a real number from the interval $(0,1)$. The basic number $[x]_{q}$ is given by

$$
[x]_{q}=\frac{1-q^{x}}{1-q} \quad(x \in \mathbb{R})
$$

and factorial of q-natural numbers

$$
[0]_{q}!=1, \quad[n]_{q}!=[n]_{q}[n-1]_{q}!=[n]_{q}[n-1]_{q} \cdots[1]_{q}, \quad n \in \mathbb{N}
$$

We define q-shifted factorials by

$$
(a ; q)_{0}=1, \quad(a ; q)_{n}=\prod_{k=1}^{n}\left(1-a q^{k-1}\right), \quad(a ; q)_{\infty}=\prod_{k=1}^{\infty}\left(1-a q^{k-1}\right)
$$

