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Abstract. Elsewhere we gave a parametrization of the Mylar balloon in
terms of elliptic functions. Here, we parametrize other linear Weingarten
surfaces using the incomplete Beta function and the hypergeometric func-
tion. We also provide a corresponding variational characterization and Maple
procedures which plot the linear Weingarten surfaces.

1. Introduction

Since the publication of [10], various authors (e.g., [2] and [5]) have studied bal-
loon shapes from different perspectives. In this paper, we want to do two things:
first, we want to derive the Mylar balloon from physical principles (based on [2]
and [5]); secondly, we want to view the Mylar balloon as a specific example of
a linear Weingarten surface and show how a specific parametrization may be de-
rived, both from the defining geometric condition and from a variational problem
generalizing the one characterizing the balloon.
The principal curvatures, k1, k2, at a point on a surface are the maximum and
minimum curvatures of curves through the point obtained by slicing the surface
with planes spanned by a chosen tangent vector and the unit normal of the surface
at the point. There are certain situations where imposing a condition on principal
curvatures characterizes a surface M . For instance, if we require that k1 = k2 at
every point of a compact surface M , then M is a sphere (see [11, Theorem 3.5.1]).
If we insist that M be a surface of revolution for which k1 = −k2, then the mean
(or average) curvature vanishes: H = (k1 + k2)/2 = 0. Hence, M is a minimal
surface of revolution. The only non-planar surfaces of this kind are catenoids,
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