Minimizers of Hartree Type Functionals and Related Interpolation Inequalities

Hristo Genev* and George Venkov ${ }^{\dagger}$
*Faculty of M athematics and Informatics, Sofia University "St. Kliment Ohridski"
1164 Sofia, Bulgaria
${ }^{\dagger}$ Faculty of Applied M athematics and Informatics, Technical University of Sofia 1000 Sofia, Bulgaria

Abstract

In this work we are concerned with the minimization problem associated to the best constant $\mathrm{C}_{\mathrm{n}, \alpha}$ in the following interpolation inequal ity

$$
\iint \frac{|u(x)|^{\alpha}|u(y)|^{\alpha}}{|x-y|^{n-2}} d x d y \leq C_{n, \alpha}\|\nabla \psi\|_{L^{2}}^{n \alpha-(n+2)}\|\psi\|_{L^{2}}^{(n+2)-(n-2) \alpha}, \quad u \in H^{1}\left(\mathbb{R}^{n}\right)
$$

for $2 \leq \alpha<1+4 /(n-2)$ and $n \geq 3$. The corresponding variational problem is equivalent to the problem of existence of a ground state solution to the nonlinear non-local elliptic equation

$$
-\Delta u+\omega u-\left(|x|^{-(n-2)} *|u|^{\alpha}\right)|u|^{\alpha-2} u=0 .
$$

We show that the ground state solution is unique and its mass $\|u\|_{L^{2}}^{2}$ determines the best constant $\mathrm{C}_{\mathrm{n}, \alpha}$. A s a consequence of the above results, we obtain sharp sufficient condition for global existence for the L^{2}-critical Hartree equation.
Keywords: Hartree potential, Weinstein functional, minimizers, interpolation inequalities
PACS: 02.30.Xx, 02.30.Sa

INTRODUCTION

We consider the functional

$$
\begin{equation*}
\mathrm{J}^{\mathrm{n}, \alpha}(\mathrm{u})=\frac{\|u\|_{L^{2}}^{(n+2)-(n-2) \alpha}\|\nabla u\|_{L^{2}}^{n \alpha-(n+2)}}{\int\left(|x|^{-(n-2)} *|u|^{\alpha}\right)|u|^{\alpha} d x} \tag{1}
\end{equation*}
$$

on the space $H^{1}\left(\mathbb{R}^{n}\right)$, $n \geq 3$, for $2 \leq \alpha<1+4 /(n-2)$. This functional is naturally associated with the interpolation inequality

$$
\begin{equation*}
\int\left(|x|^{-(n-2)} *|u|^{\alpha}\right)|u|^{\alpha} d x \leq C_{n, \alpha}\|\nabla u\|_{L^{2}}^{n \alpha-(n+2)}\|u\|_{L^{2}}^{(n+2)-(n-2) \alpha} . \tag{2}
\end{equation*}
$$

Indeed, if we denote by

$$
\begin{equation*}
J=\inf \left\{J^{n, \alpha}(u) ; u \in H^{1}\left(\mathbb{R}^{n}\right), u \neq 0\right\} \tag{3}
\end{equation*}
$$

