International Conference on Geometry, Integrability, Mechanics and Quantization June 6–11, 2014, Varna, Bulgaria Ivaïlo M. Mladenov, Mariana Hadzhilazova and Vasyl Kovalchuk, Editors **Avangard Prima**, Sofia 2015, pp 89–105

AFFINELY-RIGID BODY AND OSCILLATORY TWO-DIMENSIONAL MODELS*

JAN JERZY SŁAWIANOWSKI and AGNIESZKA MARTENS

Institute of Fundamental Technological Research, Polish Academy of Sciences 5^B , Pawińskiego Str., 02-106 Warsaw, Poland

Abstract. Discussed are some classical and quantization problems of the affinely-rigid body in two dimensions. Strictly speaking, we consider the model of the harmonic oscillator potential and then discuss some natural anharmonic modifications. It is interesting that the considered doubly-isotropic models admit coordinate systems in which the classical and Schrödinger equations are separable and in principle solvable in terms of special functions on groups.

MSC: 22E70, 33C90, 37E30

Keywords: affinely-rigid body, quantization problems, two-dimensional models, harmonic oscillator potential, anharmonic modifications, doubly-isotropic models, Schrödinger equation, special functions, separability problem

1. Classical Description

Let us consider two Euclidean spaces (N, U, η) and (M, V, g), respectively the material and physical spaces. Here N and M are the basic point spaces, U and V are their linear translation spaces, and $\eta \in U^* \otimes U^*$, $g \in V^* \otimes V^*$ are their metric tensors.

The configuration space of the affinely-rigid body

 $Q := \operatorname{AfI}(N, M)$

consists of affine isomorphisms of N onto M. The material labels $a \in N$ are parametrized by Cartesian coordinates a^{K} [1]. Cartesian coordinates in M will

^{*}Reprinted from Geometry, Integrability & Quantization **16** (2015) 94-109 doi: 10.7546/giq-16-2015-94-109.