

BERTRAND SYSTEMS ON SPACES OF CONSTANT SECTIONAL CURVATURE. THE ACTION-ANGLE ANALYSIS. CLASSICAL, QUASI-CLASSICAL AND QUANTUM PROBLEMS*

JAN JERZY SŁAWIANOWSKI and BARBARA GOŁUBOWSKA

Institute of Fundamental Technological Research, Polish Academy of Sciences 5^B Pawińskiego Str., 02-106 Warsaw, Poland

Abstract. Studied is the problem of degeneracy of mechanical systems the configuration space of which is the three-dimensional sphere, the elliptic space, i.e., the quotient of that sphere modulo the antipodal identification, and finally, the three-dimensional pseudo-sphere, namely, the Lobatchevski space. In other words, discussed are systems on groups SU(2), $SO(3, \mathbb{R})$, and $SL(2, \mathbb{R})$ or its quotient SO(1, 2). The main subject are completely degenerate Bertrand-like systems. We present the action-angle classical description, the corresponding quasi-classical analysis and the rigorous quantum formulas. It is interesting that both the classical action-angle formulas and the rigorous quantum mechanical energy levels are superpositions of the flat-space expression, with those describing free geodetic motion on groups.

MSC: 51P05, 53A35, 37N05

Keywords: action-angle description, Bertrand systems, completely degenerate problems, elliptic space, Lobatchevski space, quasi-classical analysis, sphere

CONTENTS

1.	Introduction	107
2.	Constant-Curvature Hypersurfaces in \mathbb{R}^4 and Their Bertrand Potentials	108
3.	Some General Features of Motion	118
4.	Hamilton-Jacobi Equations, Action-Angle Variables and the Bohr-Sommerfeld Quantization Rule	. 121

^{*}Reprinted from Geometry, Integrability & Quantization **16** (2015) 110-138 doi: 10.7546/giq-16-2015-110-138.