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Abstract. Studied is the problem of degeneracy of mechanical systems the
configuration space of which is the three-dimensional sphere, the elliptic
space, i.e., the quotient of that sphere modulo the antipodal identification,
and finally, the three-dimensional pseudo-sphere, namely, the Lobatchevski
space. In other words, discussed are systems on groups SU(2), SO(3,R), and
SL(2,R) or its quotient SO(1, 2). The main subject are completely degener-
ate Bertrand-like systems. We present the action-angle classical description,
the corresponding quasi-classical analysis and the rigorous quantum formu-
las. It is interesting that both the classical action-angle formulas and the rig-
orous quantum mechanical energy levels are superpositions of the flat-space
expression, with those describing free geodetic motion on groups.

MSC: 51P05, 53A35, 37N05
Keywords: action-angle description, Bertrand systems, completely degen-
erate problems, elliptic space, Lobatchevski space, quasi-classical analysis,
sphere

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
2. Constant-Curvature Hypersurfaces in R4 and Their Bertrand Potentials . . . . . . . . . 108
3. Some General Features of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4. Hamilton-Jacobi Equations, Action-Angle Variables and the Bohr-Sommerfeld

Quantization Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

∗Reprinted from Geometry, Integrability & Quantization 16 (2015) 110-138
doi: 10.7546/giq-16-2015-110-138.

106


