

THE BRACHISTOCHRONE WITH DRY FRICTION AS THE ISOPERIMETRIC VARIATIONAL PROBLEM

ALEKSANDR S. SUMBATOV

Department of Mechanics, A.A. Dorodnitsyn Computer Centre of the Russian Academy of Sciences, 117333 Moscow, Russia

Abstract. The well-known task on finding the curve of most rapid descent in presence of dry friction is solved as a variational problem.

1. Statement of a Problem

Let Axy be a cartesian frame with axis Ay drawn vertically downwards and origin A(0,0) that is the initial position of a heavy particle of mass m which starts to slide along a plane material curve with dry (Coulomb) friction towards to the final position B(a,b). Put $\mathbf{r}(t) = \{x(t), y(t)\}$ the parametric equations of the supporting curve with time t. The equations of motion of the particle are

$$m\frac{\mathrm{d}v}{\mathrm{d}t} = mg\mathbf{j}\boldsymbol{\tau} - kN, \qquad \frac{mv^2}{\rho} = mg\mathbf{j}\mathbf{n} + N$$
 (1)

where N is the module of the normal pressure force acting onto the particle from the supporting curve, the coefficient of dry friction is k < 1, the magnitude $\rho > 0$ is radius of curvature at the current point P(x(t), y(t)) of the supporting curve, τ and n are the unit vectors correspondingly of the tangent and the normal straightlines

$$\left(\frac{\dot{x}(t)}{v}, \frac{\dot{y}(t)}{v}\right), \qquad \left(\frac{\dot{y}(t)}{v}, \frac{-\dot{x}(t)}{v}\right), \qquad v = \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2}.$$

We denote the unit vector of the descending vertical by \mathbf{j} and the acceleration of a free fall by g. Let the supporting curve be convex downwards.