

## DEFORMED SQUEEZED STATE SOLUTION TO THE ASYMMETRIC SIMPLE EXCLUSION PROCESS

BOYKA ANEVA

Institute for Nuclear Research and Nuclear Energy Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria

**Abstract.** Deformed squeezed states are generalized intelligent Schrödinger sates. They are implemented for an exact solution of the stationary *n*-species stochastic diffusion boundary problem.

## 1. Introduction

Coherent and squeezed states have a wide range of applications to various problems in many different areas of physics [1–4].

By origin the coherent states are quantum states, but at the same time they are parametrized by points in the phase space of a classical system. This makes them very suitable for the study of systems where one encounters a relationship between classical and quantum descriptions. From this point of view, interacting manyparticle systems with stochastic dynamics provide an appropriate playground to enhance the utility of generalized coherent states.

A stochastic process is described in terms of a master equation for the probability distribution  $P(s_i, t)$  of a stochastic variable  $s_i = 0, 1, 2, ..., n - 1$  at a site i = 1, 2, ..., L of a linear chain. A configuration on the lattice at a time t is determined by the set of occupation numbers  $s_1, s_2, ..., s_L$  and a transition to another configuration s' during an infinitesimal time step dt is given by the probability  $\Gamma(s, s')dt$ . The time evolution of the stochastic system is governed by the master equation

$$\frac{\mathrm{d}P(s,t)}{\mathrm{d}t} = \sum_{s'} \Gamma(s,s') P(s',t) \tag{1}$$

21