MASSLESS SPINNING PARTICLES ON THE ANTI-DE SITTER SPACETIME

Stephan De Bièvre ${ }^{1}$ and Salah Mehdi ${ }^{2}$
UFR de Mathématiques and
Laboratoire de Physique Théorique et Mathématique
Université Paris VII
2, place Jussieu, F-75251 Paris Cedex 05, France

Abstract

We show that unlike what happens on Minkowski spacetime, massless classical particles on the anti-de Sitter spacetime can have a true spin degree of freedom: their phase spaces are eight-dimensional and their world lines lightlike geodesics.

It is well known that the massless non-zero helicity representations of the Poincaré group do not admit a position operator. ${ }^{1}$ This phenomenon has a classical counterpart: the corresponding classical particles are not represented by lightlike geodesics but rather by two-planes moving at the speed of light, ${ }^{2,3}$ and interpreted as wave fronts. These particles moreover have six-dimensional phase spaces, reflecting the fact that they do not have a spin degree of freedom. On the other hand, massive particles, as well as massless particles of zero helicity, are described classically by geodesics and for them a position operator does not exist in quantum mechanics. We show here that the special status of the massless non-zero helicity particles disappears on the anti-de Sitter spacetime M_{κ}.

The classical and quantum description of the massive particles on M_{κ} as well as their behaviour when the curvature κ is taken to zero was studied in detail in Refs.4-5 (and references therein). Their classical motion follows timelike geodesics. The methods of Ref. 4 are easily adapted to the zero-mass, zero-helicity case, and it is then easy to see that they move on lightlike geodesics of M_{κ} as expected. This leaves us with the equivalent of the zero-mass, non-zero helicity case. We turn to its study here. We will show that the phase space of these particles is eight-dimensional, so that they have a spin degree of freedom. Moreover the particles move on lightlike geodesics in M_{κ}.

The anti-de Sitter spacetime M_{κ} is the hyperboloid in \mathbf{R}^{5} given by:

$$
y \cdot y=\eta_{\mu \nu} y^{\mu} y^{\nu}=\eta^{\mu \nu} y_{\mu} y_{\nu}=\left(y_{1}\right)^{2}+\left(y_{2}\right)^{2}+\left(y_{3}\right)^{2}-\left(y_{4}\right)^{2}-\left(y_{5}\right)^{2}=-\kappa^{-2} .
$$

Here η is the standard symmetric quadratic form of signature $(+,+,+,-,-)$ on \mathbf{R}^{5}, which induces on M_{κ} a Lorentzian metric of signature (,,,+++-) in the usual way.

[^0]
[^0]: ${ }^{1}$ e-mail: debievre@mathp7.jussieu.fr
 ${ }^{2}$ e-mail: mehdi@mathp7.jussieu.fr

