THE q-DEFORMED QUANTUM MECHANICS IN THE COHERENT STATES MAP APPROACH

V. Maximov¹ and A. Odzijewicz²

¹ Institute of Mathematics, Tver State University Geljiabova 33, Tver, Russia

² Warsaw University Division Lipowa 41, 15-424 Bialystok, Poland

Abstract

We study q-quantum mechanics in one degree of freedom. Among other things, we discuss the holomorphic representation of the q-deformed Heisenberg-Weyl algebra and its realization by covariant Berezin symbols.

1. COHERENT STATES MAP AND q-CANONICAL COMMUTATION RELATIONS

Let \mathbf{D}_q be the open disc in \mathbb{C} of radius $(1-q)^{-1/2}$ centered at zero, where -1 < q < 1, and let \mathcal{M} be a complex separable Hilbert space with orthonormal basis $\{e_n\}, n = 0, 1, 2, \ldots$ We define the analytic map (the coherent states map), ${}^1 K_q : \mathbf{D}_q \to \mathcal{M}$ by

$$K_q(z) = \sum_{n=0}^{\infty} \left[\frac{(1-q)^n}{(1-q)\cdots(1-q^n)} \right]^{\frac{1}{2}} z^n e_n , \qquad (1.1)$$

where for n = 0 one assumes that the coefficient in front of e_0 is equal to one. Since

$$\langle K_q(z)|K_q(z)\rangle = \sum_{n=0}^{\infty} \frac{(1-q)^n}{(1-q)\cdots(1-q^n)} (\bar{z}z)^n =: \exp_q(\bar{z}z) < \infty ,$$
 (1.2)

for $\bar{z}z < (1-q)^{-1}$, the definition is correct. The function \exp_q is called⁶ the qdeformation of the exponential function $\exp = \exp_1$. So for q = 1 one obtains the standard coherent states map (the Bargmann-Fock coherent states map) and for q = 0one gets the geometric sequence, $\exp_0 \bar{z}z = (1-\bar{z}z)^{-1}$.

Having introduced the coherent states map, one can define an annihilation operator by

$$AK_q(z) := zK_q(z), \qquad \forall z \in \mathbf{D}_q.$$
(1.3)

This is a bounded operator, with norm $||A|| = (1-q)^{-1/2}$ for $0 \le q < 1$ and ||A|| = 1 for -1 < q < 0. The operators so defined satisfy q-Heisenberg commutation relations

$$[A, A^{\dagger}]_q := AA^{\dagger} - qA^{\dagger}A = 1$$
(1.4)

which were studied in Refs. 3-5 and 9-12, for instance.