QUANTIZATION BY QUADRATIC POLYNOMIALS IN CREATION AND ANNIHILATION OPERATORS

Wojtek Słowikowski
Institute of Mathematics, Aarhus University
Ny Munkegade, 8000 Aarhus C
Denmark

Let us fix a number $q=1$ or -1 . To a given Hilbert space $\mathcal{H},<,>$, we attach an algebra $\Gamma_{0} \mathcal{H}$ generated by \mathcal{H} and a unity \varnothing called the vacuum. We call $\Gamma_{0} \mathcal{H}$ a Fock algebra if the scalar product from \mathcal{H} is extended over $\Gamma_{0} \mathcal{H}$ in such a way that $\langle\varnothing, \varnothing\rangle=1$ and, for every $x \in \mathcal{H}$, the operator $a^{+}(x)$ of multiplication by x admits the adjoint $a(x)$, defined on the whole $\Gamma_{0} \mathcal{H}$ and annihilating the vacuum, i.e. $\langle x f, g\rangle=\langle f, a(x) g\rangle$ for all $f, g \in \Gamma_{0} \mathcal{H}$ and $a(x) \varnothing=0$. We assume that $a(x)$ fulfills the q-Leibnitz rule, i.e. $\left[a(x), a^{+}(y)\right]_{q}=<x, y>I$, where $[A, B]_{q}=A B-q B A$.

In the case $q=1$, the algebra $\Gamma_{0} \mathcal{H}$ is commutative and is called a Bose algebra, whereas the case $q=-1$ makes the generators from \mathcal{H} anticommute and $\Gamma_{0} \mathcal{H}$ is then called a Fermi algebra.

We denote by $\Gamma \mathcal{H}$ the completion of $\Gamma_{0} \mathcal{H},<,>$ and we write \mathcal{H}^{n} for the closure of the linear span of $\left\{x_{1} \cdots x_{n}: x_{1}, \ldots, x_{n} \in \mathcal{H}\right\}$.

Take an orthonormal basis $\left\{e_{n}\right\}$ in \mathcal{H}. To each operator $A \in \mathcal{B}(\mathcal{H})$, we assign an operator

$$
d \Gamma A=\sum_{\jmath=1}^{\infty} a^{+}\left(A e_{n}\right) a\left(e_{n}\right),
$$

which is the unique extension of A to a derivation in $\Gamma_{0} \mathcal{H}$, and hence does not depend on the choice of $\left\{e_{n}\right\}$. For $A, B \in \mathcal{B}(\mathcal{H})$, we have

$$
[d \Gamma A, d \Gamma B]=d \Gamma[A, B],
$$

i.e. the transformation $A \rightarrow d \Gamma A$ is a Lie algebra homomorphism.

Denote by $\mathcal{L}_{h s}^{q}(\mathcal{H})$ the space of all Hilbert-Schmidt conjugate linear operators L : $\mathcal{H} \rightarrow \mathcal{H}$ such that $L^{\prime}=q L$, where L^{\prime} denotes the real adjoint to L.

We define the quadratic polynomial

$$
h_{L}=\Sigma_{\jmath=1}^{\infty} e_{n}\left(L e_{n}\right) \in \mathcal{H}^{2}
$$

and observe that, for $K, L \in \mathcal{L}_{h s}^{q}(\mathcal{H})$,

$$
<h_{L}, h_{K}>=2 q \operatorname{tr} K L
$$

Then, to each $L \in \mathcal{L}_{h s}^{q}(\mathcal{H})$, we assign the operator

$$
a^{+}\left(h_{L}\right): \Gamma_{0} \mathcal{H} \rightarrow \Gamma \mathcal{H}
$$

of multiplication by h_{L}. The adjoint $a\left(h_{L}\right)$ of $a^{+}\left(h_{L}\right)$ is well defined on $\Gamma_{0} \mathcal{H}$.

