QUANTIZATION BY QUADRATIC POLYNOMIALS IN CREATION AND ANNIHILATION OPERATORS

Wojtek Słowikowski

Institute of Mathematics, Aarhus University Ny Munkegade, 8000 Aarhus C Denmark

Let us fix a number q = 1 or -1. To a given Hilbert space $\mathcal{H}, <, >$, we attach an algebra $\Gamma_0\mathcal{H}$ generated by \mathcal{H} and a unity \emptyset called the *vacuum*. We call $\Gamma_0\mathcal{H}$ a *Fock algebra* if the scalar product from \mathcal{H} is extended over $\Gamma_0\mathcal{H}$ in such a way that $< \emptyset, \emptyset >= 1$ and, for every $x \in \mathcal{H}$, the operator $a^+(x)$ of multiplication by x admits the adjoint a(x), defined on the whole $\Gamma_0\mathcal{H}$ and annihilating the vacuum, i.e. < xf, g >= < f, a(x)g > for all $f, g \in \Gamma_0\mathcal{H}$ and $a(x)\emptyset = 0$. We assume that a(x) fulfills the q-Leibnitz rule, i.e. $[a(x), a^+(y)]_q = < x, y > I$, where $[A, B]_q = AB - qBA$.

In the case q = 1, the algebra $\Gamma_0 \mathcal{H}$ is commutative and is called a Bose algebra, whereas the case q = -1 makes the generators from \mathcal{H} anticommute and $\Gamma_0 \mathcal{H}$ is then called a Fermi algebra.

We denote by $\Gamma \mathcal{H}$ the completion of $\Gamma_0 \mathcal{H}, <, >$ and we write \mathcal{H}^n for the closure of the linear span of $\{x_1 \cdots x_n : x_1, ..., x_n \in \mathcal{H}\}$.

Take an orthonormal basis $\{e_n\}$ in \mathcal{H} . To each operator $A \in \mathcal{B}(\mathcal{H})$, we assign an operator

$$d\Gamma A = \sum_{j=1}^{\infty} a^+(Ae_n)a(e_n),$$

which is the unique extension of A to a derivation in $\Gamma_0 \mathcal{H}$, and hence does not depend on the choice of $\{e_n\}$. For $A, B \in \mathcal{B}(\mathcal{H})$, we have

$$[d\Gamma A, d\Gamma B] = d\Gamma[A, B],$$

i.e. the transformation $A \rightarrow d\Gamma A$ is a Lie algebra homomorphism.

Denote by $\mathcal{L}_{hs}^q(\mathcal{H})$ the space of all Hilbert-Schmidt conjugate linear operators L: $\mathcal{H} \to \mathcal{H}$ such that L' = qL, where L' denotes the real adjoint to L.

We define the quadratic polynomial

$$h_L = \sum_{j=1}^{\infty} e_n(Le_n) \in \mathcal{H}^2$$

and observe that, for $K, L \in \mathcal{L}_{hs}^{q}(\mathcal{H})$,

$$\langle h_L, h_K \rangle = 2q \text{ tr } KL.$$

Then, to each $L \in \mathcal{L}_{hs}^q(\mathcal{H})$, we assign the operator

$$a^+(h_L): \Gamma_0\mathcal{H} \to \Gamma\mathcal{H}$$

of multiplication by h_L . The adjoint $a(h_L)$ of $a^+(h_L)$ is well defined on $\Gamma_0 \mathcal{H}$.