FROM QUANTUM MECHANICS TO CLASSICAL MECHANICS AND BACK, VIA COHERENT STATES

Stefan Berceanu 1,2

- ¹ Equipe de Physique Mathématique et Géométrie CNRS – Université Paris VII, Mathématique, Tour 45-55 5e étage, 2 place Jussieu, 75251 - Paris Cedex 05, France
- ² Permanent address: Institute of Atomic Physics Institute of Physics and Nuclear Engineering Department of Theoretical Physics
 P. O. Box MG-6, Bucharest-Magurele, Romania E-mail: Berceanu@Roifa.Bitnet

1. INTRODUCTION

The coherent states have been introduced in one of the three equivalent ways: i) eigenstates of the harmonic-oscillator operator; ii) action of the displacement operator on the vacuum of the harmonic-oscillator; iii) intelligent states, i.e. quantum states which saturate the position-momentum uncertainty relationship of Heisenberg.¹ Besides, the coherent states have the property: P) if the initial state is a coherent state and the Hamiltonian is linear in the generators of the group, then the state will evolve into a coherent state.²

Perelomov's definition of coherent state manifold,³ as orbit of a given group Gthrough a fixed point of the projective Hilbert space **PK** attached to the Hilbert space K, generalizes ii) from the Weyl group to arbitrary Lie groups. Perelomov's definition can be globalized.⁴ Despite a great number of successful applications,^{1,2,5} the exact role of coherent states as a bridge between quantum mechanics and classical mechanics is not completely clear. In this context, an observation which relates the geodesic flow on symmetric spaces G/K to his image in the coherent state manifold M is pointed out. Starting with a given quantum mechanical problem, a procedure to associate to a quantum dynamical system a classical one using the coherent states was proposed by Berezin.⁶ In some situations,⁷ the dequantization is compatible^{8,9} with the geometric quantization.¹⁰ The problem of reconstruction of the solution of the initial quantum problem (requantization) consists mainly in finding all unitary equivalence classes of irreducible unitary representations of $G^{10,11}$ For Hermitian symmetric spaces, 12-14 this construction is equivalent to geometric quantization.^{8,15} For a large class of linear systems, property P) (i.e. "once a coherent state, always a coherent state") is still valid.¹⁶ More precisely, for linear dynamical systems, the solution of the Schrödinger equation can be expressed¹⁷ by the coherent vector times the exponential of the sum of the