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Abstract The use of the symbolic software package GeM for Maple is illustrated
with examples of computation of nonlocal symmetries and nonlocal conservation
laws of nonlinear partial differential equations. In the considered examples, the
nonlocal symmetries and conservation laws arise as local symmetries and conserva-
tion laws of potential systems. Full Map1e code with detailed comments is presented.
Examples of automated symmetry and conservation law classification are included.

1 Introduction

The majority of contemporary mathematical models involving partial and ordinary
differential equations (PDE, ODE) are essentially nonlinear. The analysis of such
models often proceeds using approximate, numerical, and/or problem-specific meth-
ods. In particular, the efficiency and precision of numerical solutions is commonly
restricted by nonlinear effects, which limit mesh sizes and boost computation times,
as well as by extra large data structures arising in discretizations of multi-dimensional
problems.

Methods based on the framework of symmetry and conservation law analysis can
be systematically applied to wide classes of PDE and ODE models. This research
area, pioneered by Sophus Lie and Emmy Noether, has been recently developed
in various directions, having become a set of interrelated methods that can provide
essential analytical information about the underlying equations. For further details,
an interested reader is referred to [6, 9, 10, 15, 26, 33].

For ODEs, seeking conservation laws is equivalent to seeking integrating
factors; conserved quantities (first integrals) lead to the reduction of order. Conser-
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